Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee. USA.
Kowala, C. \& Wunderlich. J. A. (1973). Inorg. Chiim. Acta. 7, 331338.

Margaret. G.. Steven. D. H.. Brain, P. \& David, J. W. (1985). Inorg. Chim. Acta. 107. 49-55.
Nardelli. M. (1983). Comput. Chem. 7. 95-98.
Pannerselvam. P. \& Thomas Muthiah, P. (1998). In preparation.
Rong, M.. Muir, M. M.. Cadiz. M. E. \& Muir, J. A. (1991). Acta Cnsst. C49, 1539-1541.
Sheldrick. G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. University of Göttingen, Germany.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Gcrmany.
Trus. B. L. \& Marsh. R. E. (1973). Acta Crıst. B29. 2298-2301.
Udupa. M. R. \& Krebs. B. (1979). Inorg. Chim. Actu. 32. 1-5.
Umadevi. B., Thomas Muthiah. P.. Shui. X. \& Eggleston, D. S. (1995). Inorg. Chim. Acta, 234, 149-152.
Windholz. M. (1983). Editor. The Merck Index, 10th ed. Rahway. NJ. USA: Merck \& Co. Inc.

Acta Cryst. (1998). C54, 1907-1909

9-(Carboxymethyl)-6-chloropurine Ethyl Ester \dagger

Geeta Sood, Carl. H. Schwalbe and William Fraser
Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, England. E-mail: c.h.schwalbe@aston.ac.uk

(Received 6 May 1998; accepted 8 July 1998)

Abstract

Alkylation of 6-chloropurine using ethyl bromoacetate gives a mixture of monoalkyl regio-isomers from which the title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{2}$, was isolated in crystalline form. In both independent molecules, the side chain adopts an extended conformation; its carboxy-methyl-group plane intersects the planar heterocycle at angles of 60.1 (1) and $65.8(1)^{\circ}$, respectively.

Comment

The synthetic usefulness of N-substituted chloropurines is well documented; displacement of the chloro group can be achieved using amine or oxygen nucleophiles to provide adenine and hypoxanthine analogues with defined substitution patterns. This route, particularly to substituted hypoxanthines, is preferred (Rao \& Revankar, 1995) since direct alkylation of hypoxanthine itself gives mixtures containing peralkylated products (Sood

[^0]et al., 1998a). Although direct alkylation of 6-chloropurine attaches a substituent at either N9 or N7, alkylation occurs predominantly at N9 in the absence of protecting groups (Dalby et al., 1993). The distribution of regio-isomers is similar, whether potassium carbonate (Sood et al., 1998c) or sodium hydride (Rao \& Revankar, 1995) is used as the base. Alkylation of 6 -chloropurine using ethyl bromoacetate gave a separable mixture of crystalline regio-isomeric products: 7 -(carboxymethyl)-6-chloropurine ethyl ester, (II), in 27% yield, and the title compound, (I), in 65% yield. Although we have already reported on the crystal structure of (II) (Sood et al., 1998c), only recently did we obtain X-ray diffraction quality crystals of its regio-isomer, (I). We decided to determine the crystal structure of (I) in order to illustrate that the ethyl acetate side chain was indeed attached at N9 as anticipated, and also to compare the structure of (I) with its regio-isomer, (II), and related structures.

(I)

Two molecules, (IA) and (IB), constitute the asymmetric unit. The ethyl acetate side chain in (I) avoids steric hindrance with the heterocycle by emerging from N 9 with the $\mathrm{C} 8-\mathrm{N} 9-\mathrm{C} 10-\mathrm{C} 11$ torsion angle equal to $58.2(5)^{\circ}$ in (IA) and $65.1(5)^{\circ}$ in (IB). In the reported series of substituted analogues containing the same ethyl acetate fragment (Sood et al., 1997b; Flensburg \& Egholm, 1994) or the methyl homologue (Sood et al., 1997a, 1998b), the equivalent torsion angle ranges are 50.8 (6) to 104.65 (13) and -92.9 (3) to -104.5 (2) $)^{\circ}$, respectively. The ring atoms in (IA) and (IB) are planar, with r.m.s. deviations of 0.006 and $0.009 \AA$, respectively. Many of the geometrical features of (I) resemble those of its 2,6 -dichloro analogue (Chan et al., 1995), but with the internal $\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$ angle in (I) marginally compressed, by $1.8(4)^{\circ}$. Compared with the regio-isomer, (II), attachment of the substituent at N 9 expands the internal angles at C 5 by $4.3(4)$ and at N 9 by $1.8(4)^{\circ}$, whereas C4 and N7 are contracted by $-4.2(4)$ and $-1.5(4)^{\circ}$. The side chain in (I) differs from (II), both in its relationship to the heterocycle and in its conformation; torsion angles for (IA) and (IB) are given in Table 1, and show an almost fully extended conformation. In the absence of any amino groups, the most significant of several $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts is a weak hydrogen bond between H8A and a nearby O12B carbonyl group in the other independent molecule in the unit cell, with $\mathrm{H} 8 A \cdots \mathrm{O} 12 B^{1}=2.52(2) \AA$ [symmetry code: (i) $-x+1,-y,-z+1]$.

Fig. I. ORTEPII plot (Johnson, 1976), showing the structures of the two independent molecules of (I) and the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

Experimental

The title compound, (I), was synthesized by direct alkylation of 6 -chloropurine using ethyl bromoacetate and potassium carbonate in acetonitrile, as described recently by Sood et al. (1998c), and then recrystallized from methanol.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{2}$
$M_{r}=240.65$
Triclinic
P1
$a=5.872(2) \AA$
$b=10.529(2) \AA$
$c=19.096(5) \AA$
$\alpha=105.01(2)^{\circ}$
$\beta=93.85(2)^{\circ}$
$\gamma=105.00(2)^{\circ}$
$V=1090.1(5) \AA^{3}$
$Z=4$
$D_{x}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans (North et al., 1968) $T_{\text {min }}=0.473, T_{\text {max }}=0.736$
3890 measured reflections 3826 independent reflections
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=19.7-33.2^{\circ}$
$\mu=3.066 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.35 \times 0.15 \times 0.10 \mathrm{~mm}$ Colourless

3245 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.077$
$\theta_{\text {max }}=67.92^{\circ}$
$h=0 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-22 \rightarrow 22$
3 standard reflections frequency: 120 min intensity decay: 9%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.234$
$S=1.099$
3659 reflections
292 parameters
H atoms riding

$$
\begin{aligned}
& w^{\prime}= 1 /\left[\sigma^{2}\left(F_{\sigma}^{2}\right)+(0.1616 P)^{2}\right. \\
&+0.5288 P] \\
& \text { where } P=\left(F_{i}^{2}+2 F_{i}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\text {max }}=0.002
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\text {max }}=0.597 \mathrm{e}^{-\mathrm{A}} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.627 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0075 (16)

Scattering factors from International Tables for Crustallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

N7A-C8A	1.311 (5)	$\mathrm{N} 7 \mathrm{~B}-\mathrm{C} 8 B$	1.301 (6)
C8A-N9A	1.367 (4)	C8B-N9B	1.377 (5)
$\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	128.0 (3)	$\mathrm{N} 3 B-\mathrm{C} 2 B-\mathrm{N} 1 B$	128.2 (3)
N9A-C4A-C5A	105.6 (3)	N9 $B-\mathrm{C} 4 B-\mathrm{CSB}$	105.6 (3)
N7A-C5A-C4A	110.3 (3)	$C 6 B-C 5 B-C 4 B$	115.0 (3)
C8A-N7A-C5A	103.5 (3)	$\mathrm{C} 8 B-\mathrm{N} 7 B-\mathrm{C} 5 B$	103.8 (3)
N7A-C8A-N9A	114.6 (3)	$\mathrm{N7B-C8B-N9B}$	114.3 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 9 \mathrm{~A}-\mathrm{C} 8$ A	$106.0(3)$	$\mathrm{C} 4 \mathrm{B-N9B-C8B}$	105.5 (3)
C8A-N9A-C10A-C11A			
$\mathrm{N} 9 \mathrm{~A}-\mathrm{ClOA}-\mathrm{C} 11 \mathrm{~A}-\mathrm{O} 13 \mathrm{~A}$			
$\mathrm{C10A}-\mathrm{C11A}-\mathrm{O13A}-\mathrm{C14A}$		A -176	
$\mathrm{C} 11 A-\mathrm{O} 13 A-\mathrm{Cl4.4-C15A}$			
$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 9 \mathrm{~B}-\mathrm{ClOB-C11B}$			
$\mathrm{N} 9 \mathrm{~B}-\mathrm{C10B-C11B-O13B}$		168	
$\mathrm{C10B-C11B-O13B-C14B}$		$B \quad-177$	
$\mathrm{C} 11 B-\mathrm{O} 3 B-\mathrm{C} 14 B-\mathrm{C} 15 B$			

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CADABS (Gould \& Smith. 1986). Program(s) used to solve structure: MULTAN11/84 (Main et al., 1984). Program(s) used to refine structure: SHELXL93 (Sheldrick. 1993). Molecular graphics:

ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The authors thank the EPSRC for a total technology studentship (GS), Celltech Therapeutics (Slough) for continuous support of the DNA molecular recognition project, and Mike Eaton and Jim Turner for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1279). Services for accessing these data are described at the back of the journal.

References

Chan, D. M. C., Schwalbe, C. H., Sood, G. \& Fraser, W. (1995). Acta Crust. C51, 2383-2386.
Dalby, C., Bleasdale, C., Clegg. W., Elsegood, M. R. J., Golding, B. T. \& Griffin, R. J. (1993). Angew. Chem. Int. Ed. Engl. 32, 1696-1697.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flensburg. C. \& Egholm, M. (1994). Acta Crust. C50, 1480-1482.
Gould. R. O. \& Smith, D. E. (1986). CADABS. Program for CAD-4 Data Reduction. University of Edinburgh. Scotland.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessec. USA.
Main. P., Germain. G. \& Woolfson. M. M. (1984). MULTAN11/84. A Systern of Computer Programs for the Automatic Solution of Cristal Structures from X-ray Diffraction Data. Universities of York. England. and Louvain. Belgium.
North. A. C. T.. Phillips, D. C. \& Mathews. F. S. (1968). Acta Crest. A24. 351-359.
Rao. T. S. \& Revankar, G. R. (1995). J. Heterocycl. Chem. 32, 10431049.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Sood, G., Schwalbe, C. H. \& Fraser. W. (1997a). Acta Cnst. C53. 608-610.
Sood, G., Schwalbe. C. H. \& Fraser. W. (1997b). Acta Crest. C53, 1624-1626.
Sood, G.. Schwalbe. C. H. \& Fraser, W. (1998a). Acta Cṇst. C54, 114-116.
Sood, G.. Schwalbe. C. H. \& Fraser. W. (1998b). Acta Crest. C54. 659-661.
Sood, G., Schwalbe. C. H. \& Fraser, W. (1998c). Acta Crụst. C54, 1316-1318.

Acta Cryst. (1998). C54, 1909-1911

4'-(Dimethylamino)-2-nitroazobenzene \dagger

De-Chun Zhang, ${ }^{\text {a }}$ Li-Qin Ge, ${ }^{\text {a }}$ Zheng-Hao Fei, ${ }^{b}$ YanQiu Zhang ${ }^{a}$ and Kai-Bei Yu ${ }^{c}$
${ }^{\text {a Department of Chemistry, Suzhou University, Suzhou }}$ 215006, China, 'Chemistry Department, Yancheng Teacher's College, Yancheng 224002, China, and 'Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. E-mail: dczhang@suda.edu.cn
(Received 6 March 1998; accepted 29 May 1998)

Abstract

The title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$, has trans geometry about the azo linkage. The dihedral angle between the two phenyl rings is $5.3(2)^{\circ}$ and the twist angle for the nitro group is $63.9(2)^{\circ}$. Excluding the nitro group, the molecular skeleton is almost planar, which may enhance the photostability of the compound. Within the crystal structure, molecules related by a glide plane are connected by weak intermolecular hydrogen bonding and form zigzag chains in the [001] direction. The polar molecular chains, which are arranged anti-parallel, are packed into stacks in the [101] direction through $\pi \cdots \pi$ interactions; the interstack forces are mainly van der Waals interactions.

Comment

Dyes based on 4-aminoazobenzene, containing a donoracceptor chromogen, are important for use on polyester fibres, owing to their desirable colour and satisfactory light-fastness properties (Jan et al., 1984; Oh \& Kim, 1995). Some push-pull azobenzene compounds are second- or third-order nonlinear optical materials (Kang et al., 1995; Shen et al., 1992) and have potential applications in photonic devices. Technical interest prompted us to undertake a systematic study (Zhang et al., 1997), during the course of which we synthesized the title compound, (I), and confirmed its structure by X-ray analysis.

(I)

The bond distances in (I) are essentially the same when compared with those in 4^{\prime}-(diethylamino)-2-nitroazobenzene [(II); Zhang et al., 1997] and 4^{\prime}-[bis $(\beta$ -hydroxyethyl)amino]-2-nitroazobenzene [(III); McIntosh et al., 1989)], apart from the short N1-O2 link $[1.190(3), 1.217$ (2) and 1.221 (2) \AA for (I), (II) and

[^1]
[^0]: \dagger Alternative name: cthyl 6-chloropurine-9-acetate.

[^1]: \dagger IUPAC name: (4-dimethylaminophenyl)(2-nitrophenyl)diazene.

